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Abstract We report here: (a) formulas/procedures for calculating the similarity of
molecules, considering their chemical structure, size, shape and hydrophilicity (b) a
procedure for clusterization of the sets of molecules, according to similarity (c) formu-
las/procedures for calculating the diversity of molecules in clusterized sets as well as
similarity of clusterized sets, based on Shannon Entropy formalism The paper analyses
the influence of the diversity of molecules and similarity of calibration/prediction sets
on the quality of prediction for prediction set molecules. The calculated influence of
certain molecular feature (chemical structure, size, shape and hydrophilicity) on tox-
icity depends on the structure of the database, specifically the number of molecules
and diversity of molecules having analyzed molecular feature. A QSAR analysis of
49 phenol derivatives revealed the effect of the diversity of molecules in sets and of
the similarity of sets on the quality of prediction for prediction set molecules: (a) a
direct correlation with the similarity of sets, regardless of analyzed molecular feature
(b) an inverse correlation with the diversity of molecules in the calibration set, from
the point of view of chemical structure, size and shape (c) a direct correlation with
the diversity of molecules in calibration set, from the point of view of hydrophilicity
(d) a direct correlation with the diversity of molecules in prediction set, regardless of
analyzed feature.
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1 Introduction

In QSPR (Quantitative Structure-Property Relationship) studies the dependent prop-
erty P can be biochemical activity (QSPR ≡ QSAR), toxicity (QSPR ≡ QSTR), chro-
matographic retention time (QSPR ≡ QSRR), viscosity (QSPR ≡ QSVR), molecular
aromaticity (QSPR ≡ QSArR) etc. About 90 % of QSPR studies quoted in literature
are QSAR studies.

In QSPR studies one uses two groups of molecules. Here, these groups are named
calibration set and prediction set.

In QSAR studies the calibration set includes molecules having known (observed)
value of biochemical activity. Applying specific methodology, these molecules are
used to identify the best QSAR, i.e. the mathematical formula which gives the mini-
mum difference between the observed and computed values of activity. The QSARs
include few descriptors, i.e. computable features of molecules. The descriptors in the
best QSAR are named predictors.

The QSAR is used to compute the value of activity for prediction set molecules,
which are not used in QSAR computation.

In academic QSAR studies the prediction set includes molecules having known
value of activity. Consequently, the computed values of activity can be compared
with observed values. In this case the comparison is an external validation test, the
prediction set is named validation set and the agreement between observed and com-
puted values is a measure of the quality of QSAR. A certain external validation test
uses, as validation set, molecules extracted from the initial calibration set. Any QSAR
obtained using all available molecules having known value of activity (all included in
calibration set) cannot be validated by external validation, because the validation set is
non-existent. Therefore, the computation using all molecules and the computation in
the validation test use different calibration sets and the obtained QSARs are different.
Hence, any external validation test says nothing regarding the predictive power for
molecules in the initial prediction set of QSAR obtained using all molecules in the
initial calibration set. Consequently, the utility of external validation tests is a debat-
able subject in the literature [1–8]. Some authors presented rational procedures for
the selection of calibration and validation sets [9].

In practical QSAR studies, the prediction set includes new, not yet synthesized
molecules, as imaginary result of (rational) drug design. The real activity for mole-
cules in the prediction set is unknown and the agreement between observed and com-
puted values cannot be computed. As a rule, this (unknown) agreement is good only if
the (known) best QSAR for the calibration set and the (unknown) best QSAR for the
prediction set are similar. There are no studies in literature concerning the similarity
of QSARs and it is not subject of this paper. In principle, this similarity should be the
effect of the similarity of the calibration set (as a whole) and the prediction set (as a
whole) from the points of view of various features F (chemical structure, molecular
size, molecular shape, lipophilicity etc.). This similarity should emphasize the simi-
larity of the structure-activity relationship in the calibration set and the prediction set,
respectively.

Frequently, the observed values of activity are within a large enough range, more
than two logarithmic units, and the diversity of these values is high. Consequently,
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another problem is the diversity of the molecules in the calibration and prediction
sets, from the points of view of F. If the diversity of molecules in the calibration set,
from the point of view of F, is too low, the QSAR methodology cannot identify the
descriptors regarding F as significant and the best QSAR cannot include, as predictors,
the descriptors regarding F. On the contrary, if the diversity is too high these sets can
be non-homogeneous, i.e. can include two or more classes, different from the point of
view of structure-activity relationship.

The chemical similarity of molecules is often described as an inverse of Euclid-
ean/ non-Euclidean distance in a certain descriptor space [10–22]. Our paper presents
some formulas/procedures for the calculation of the similarity of molecules from the
point of view of chemical structure, size, shape and hydrophilicity, a procedure for the
clusterization of the sets of molecules, according to their similarity and some formu-
las/procedures for the calculation of the diversity of molecules in clusterized sets and
the similarity of clusterized sets.

To increase the chance for a good prediction of activity for the prediction set mole-
cules in practical QSAR studies, one should uses certain calibration and prediction
sets, suitable from the point of view of similarity and diversity. In theory, the similar-
ity of calibration and prediction sets (as a whole) should be as high as possible and
the diversity of molecules, from the point of view of F, should be either high or low,
depending on the nature of F. The goal of paper is to verify this idea.

2 Methods and formulas

Sometimes the databases (calibration set + prediction set) used in the vast QSPR/QSAR
field include quite similar molecules from the point of view of the chemical structure
and non-similar from the point of view of size and shape [23,24]. Other databases
include very non-similar molecules from all points of view [25,26].

2.1 The used database

To verify the effect of similarity and diversity on the quality of prediction for prediction
set molecules, we analyzed, to give an example, a small number of phenol derivatives in
Table 1, ordered by the value of activity. The activity is the toxicity against Tetrahymena
pyriformis protozoan. The values of toxicity are quoted in literature [27,28]. Here,
the values of toxicity are weighted within the [0, 2.638] range, in order to use in
computations only positive values of the dependent property.

2.2 Geometry optimization and computation of descriptors

The virtual building of the molecules in Table 1 and the geometry optimization were
done using the molecular-mechanics program PCModel [29]. The more rigorous
geometry optimization was subsequently performed by quantum-mechanics program
MOPAC [30] using the keywords pm6 pulay gnorm = 0.2 geo-ok bonds vectors. These
keywords fixed the parameters of geometry optimization.
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Table 1 The chemical structure
and the toxicity of analyzed
phenols

No. Substituent(s) Toxicity

1 None 0.000

2 4-Methyl 0.239

3 3-Methyl 0.369

4 2,5-Dimethyl 0.440

5 2-Fluoro 0.448

6 3,5-Dimethyl 0.544

7 2,3-Dimethyl 0.553

8 3,4-Dimethyl 0.553

9 2,4-Dimethyl 0.559

10 2-Ethyl 0.607

11 3-Ethyl 0.660

12 3-Fluoro 0.679

13 2-Chloro 0.708

14 2-Fluoro 0.827

15 2,3,6-Trimethyl 0.849

16 3-Fluoro 0.904

17 4-iso-propyl 0.904

18 2-Bromo 0.935

19 4-Chloro 0.976

20 3-iso-propyl 1.040

21 2-Chloro-5-methyl 1.071

22 4-Bromo 1.112

23 2-Methyl-4-chloro 1.131

24 3-tert-butyl 1.161

25 3-Methyl-4-chloro 1.226

26 2-iso-propyl 1.234

27 3-chloro-4-fluoro 1.273

28 4-iodo 1.285

29 4-tert-butyl 1.344

30 3,4,5-trimethyl 1.361

31 2,4-dichloro 1.467

32 2-phenyl 1.525

33 3-iodo 1.549

34 2.5-dichloro 1.559

35 3,5-dimethyl-4-chloro 1.634

36 2,4-dimethyl-6-tert-butyl 1.676

37 2,3-dichloro 1.702

38 2-methyl-4-bromo-6-chloro 1.708

39 2,6-dimethyl-4-bromo 1.709
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Table 1 continued
No. Substituent(s) Toxicity

40 2-tert-butyl-4-methyl 1.728

41 2,4-dibromo 1.834

42 3,5-dichloro 1.993

43 2,6-dichloro-4-bromo 2.210

44 2,6-di-tert-butyl-4-methyl 2.219

45 2-iso-propyl-4-chloro-5-methyl 2.293

46 2,4,6-tribromo 2.481

47 2,4,5-trichloro 2.531

48 2,6-diphenyl 2.544

49 2,4-dibromo-6-phenyl 2.638

Based on the output files created by MOPAC, the PRECLAV software [7,31] calcu-
lated, for each molecule, more than 1,000 whole molecule and 3D descriptors, specific
to this program. The same software was used in the identification of molecular frag-
ments, similarity/diversity and statistical computations.

2.3 Identification of the significant molecular fragments

These calculations use the result of the identification of molecular fragments, according
to a previously described algorithm [32]. Actually, two bonded (by a chemical bond
having B bond order value) heavy atoms (different from hydrogen) are included within
the same fragment if B > 1.051 (an empirical limit value specific to computation by
quantum-mechanics method PM6). For instance, if the conjugation of the OH group
with the cycle, in phenol derivatives, is strong enough (high enough value of B),
the OH fragment is missing and the C6HxO fragment is present. Using this idea the
program cuts off the fragments in the analyzed molecule.

After the identification of the fragments the program computes, for each molecule,
some descriptors of fragments and the percentage in weight of the fragments. For each
fragment, the sign of the Pearson linear correlation r , within [−1,+1] range, between
the value of percentages and the value of activities, can be positive or negative and
the square of correlation r2, within [0, 1] range, can be high or low. A positive sign
of correlation means high mass percent of this fragment increases the activity value.
Consequently, a negative sign of correlation means high mass percent of this fragment
decreases the activity value. The significant molecular fragments fulfill condition (1).

r2 > Ln (N) / N (1)

where N is the number of molecules in the calibration set

2.4 The algorithm for chemical similarity

The chemical similarity calculation also uses the result of the identification of mole-
cular fragments.
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All identified fragments are classified according to following criteria #1 and #2.
If the number of heavy atoms included is 1 the value of criterion #1 is 1. If the

number of heavy atoms included is 2 or 3 the value of criterion #1 is 2. If the number
of heavy atoms included is >3 the value of criterion #1 is 3.

Criterion #2 is the string of symbols of included elements, in alphabetical order.
If the value of criterion #1 and criterion #2 is the same the analyzed fragments are

considered in the same class.
Exceptionally, fragment C is considered in the same class with fragments CH, CH2

and CH3. Fragments F, Cl, Br, I are identified as different fragments and are included
in different classes. Also, fragments B, N, O, S, P, As, Si, Se and Te are identified as
different fragments and are included in different classes. Fragments NO and SO are
different. Fragments NH, OH and SH are different also. The fragments in the pairs
NO/NO2, SO/SO2 and NH/NH2 are included in the same class. According to this
algorithm the fragments NCO (disubstituted amide), OCN (cyanate) and NCO (iso-
cyanate) are included into the same class also. The fragments NHCO (monosubstituted
amide) and N2HnCO (substituted urea) are different because of the different values of
criterion #1. All aromatic fragments CnHm are included into the same class (however,
if m = 0 the fragment is considered different).

We computed, within the [0, 1] range, the ratios (in weight) pi of each class of
fragments and we used these ratios in the calculation of Shannon Entropy SE [33] of
the analyzed molecule.

SE = −
k∑

i=1

pi · Log (pi ) (2)

where k is number of class of fragments
If the molecule includes just one fragment (for instance PAHs and azines) or just

one class of fragments (for instance alkanes) the value of SE is zero because k = 1
and p1 = 1.

The Chemical Structure similarity SIMCS of two molecules is

SIMCS = (SE1 + 1)/(SE12 + 1) · (SE2 + 1)/(SE12 + 1) · k1/ k12 · k2/k12 (3)

where SE1—the Shannon Entropy of the molecule #1; SE2—the Shannon Entropy
of the molecule #2; SE12—the Shannon Entropy for the aggregate #1 + #2; k1—the
number of classes in molecule #1; k2—the number of classes in molecule #2; k12—the
number of classes in aggregate #1 + #2.

If the ratios in formula (3) are > 1 the program uses the inverse of these ratios.
Consequently, the value of SIMCS is within the [0, 1] range.

Two molecules are very similar from the point of view of chemical structure if they
include the same classes of molecular fragments. If the value of SIMCS is high enough
the molecules can be included into the same chemical cluster.

Ideas presented here regarding the calculation of chemical similarity are an updated
version of a previously described algorithm [34].
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2.5 Formulas for similarity of shapes

To compute the similarity SIMSH of the shapes for two molecules the program uses
the value of descriptors GSI and PAX.

The general shape, 1D, 2D or 3D, of the circumscribed ellipsoid of the analyzed
molecule is the value of function GSI, within the range [1,3].

GSI = (md1 + md2) /md3/k + k (4)

The descriptors md1, md2 and md3, md1 ≤ md2 ≤ md3, are the molecular dimen-
sions computed by MOPAC software [30]. If the ratio md1/md3 is small enough
(≤0.25) then the factor k = 1, else k = 2.

If GSI ∼ 1 the shape of circumscribed ellipsoid is very elongated (dicyane, tri-
acetylene etc.). If 1.8 ≤ GSI ≤ 2.2 the shape is somehow planar (benzene, 1,3,5-
trinitro-benzene, pyrene etc.). If GSI ≥ 2.7 the shape of the circumscribed ellipsoid
is almost spherical (methane, cubane, adamantane, fullerenes etc.).

PAX is the variation coefficient of distances to geometric center, computed for
peripheral atoms. A certain atom is considered peripheral if it is bonded with maximum
two other atoms. For instance, dimethyl-ether includes 7 peripheral atoms, i.e. 6
hydrogen atoms and 1 oxygen atom.

SIMSH = minimum (r1, r2) (5)

where r1 = GSI1/GSI2 r2 = PAX1/PAX2
If r1 > 1 and/or r2 > 1 the program uses the inverse of these ratios and the value

of SIMSH is within the range [0, 1].
Two molecules are similar from the point of view of molecular shape if the general

shape indices GSI and the unevenness of molecular surfaces PAX are similar. If the
value of SIMSH is high enough the molecules can be inserted into the same shape
cluster.

2.6 Formula for the similarity of size

To compute the similarity SIMSZ of size for two molecules the program uses the value
of descriptor COSMO volume CVO, computed by MOPAC software [30].

SIMSZ = CVO1/CVO2 (6)

If SIMSZ > 1 the program uses the inverse of this ratio and the value of SIMSZ is
within the range [0, 1]. If the value of SIMSZ is high enough the molecules can be
inserted into the same size cluster.

2.7 Formulas for the similarity of hydrophilicity

To compute the similarity SIMHP of hydrophilicity for two molecules the program
uses the value of descriptors AHY (average hydrophilicity of molecular fragments)
and XHY (maximum hydrophilicity of molecular fragments).
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The hydrophilicity of a certain molecular fragment is the difference � between the
maximum value Smax of the net charges of hydrogen atoms and the minimum value
Smin of the net charges of heteroatoms.

� = Smax − Smin (7)

If the hydrogen atoms in the fragment are missing Smax = 0. If the heteroatoms in
the fragment are missing Smin = 0. Therefore, � = 0 for fragments which includes
only carbon atoms (C in carbon tetrachloride, C2 in tetrachloroethylene, C6 in total
substituted benzene etc.).

SIMHP = minimum (r1, r2) (8)

where r1 = AHY1/AHY2 r2 = XHY1/XHY2
If r1 > 1 and/or r2 > 1 the program uses the inverse of these ratios and the value

of SIMHP is within the range [0, 1].
Two molecules are similar from the point of view of hydrophilicity if the values

of the AHY and XHY descriptors are similar. Dodecane and dodecanol present close
value of the AHY descriptor but very different value of the XHY descriptor. Methanol
and dodecanol present different value of the AHY descriptor but very close value of
the XHY descriptor.

If the value of SIMHP is high enough the molecules can be inserted into the same
hydrophilicity cluster.

2.8 Algorithm for clusterization

To include a certain molecule into a certain cluster the algorithm uses criteria K#1 and
K#2.

K#1 = SIMmax/ SIMmin (9)

where SIMmax is maximum similarity with not yet included (clusterized) molecules;
SIMmin is minimum similarity with not yet clusterized molecules

K#2 = (SIMmax − k) /SIMmin (10)

where
SIMmax is maximum similarity with molecules included in analyzed cluster
k is empirical limit value for similarity which depends on similarity criterion (chemical
structure, molecular size, molecular shape, hydrophilicity)
SIMmin is minimum similarity with not yet included molecules

The first molecule, included into the first cluster, is the molecule having the maxi-
mum value of ratio K#1. This molecule is the seed of the first cluster.

Then, the algorithm computes, for each not yet clusterized molecule and for each
existent cluster, the value of K#2. The maximum value of K#2 indicates which mole-
cule will be clusterized and which cluster will include this molecule.
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If the maximum value of K#2 is negative, because SIMmax < k, the algorithm
computes, for all not yet clusterized molecules, the value of K#1. Therefore, the
algorithm identifies a seed for a new cluster.

The program uses clusterization procedure for the calibration set, the prediction set
and the entire database (calibration set + prediction set aggregate).

2.9 The diversity of molecules in sets and the similarity of sets

After the clusterization of the molecules in the calibration and prediction set, the
program computes, using formula (2), the diversity of molecules in the calibration and
prediction set.

In these computations the classes in formula (2) are the identified clusters. Always,
n > k, where n is the total number of clusterized molecules, and the maximum value
of entropy is Log (n) [34]. Actually, the diversity is the Shannon Entropy SE weighted
by Log (n). Consequently, the value of diversity is within the range [0, 1].

Then the program computes, using formula (3), the similarity of calibration and
prediction sets.

2.10 Statistical calculations

The molecules in Table 1 were divided into four groups. The group G#1 includes
molecules 2, 4, 6, …, 38, 40, 42, 43, 45, 47 and 49. The group G#2 includes the
molecules in Table 1 which are not included in G#1. The group G#3 includes the
molecules 1–25. The group G#4 includes the molecules in Table 1 which are not
included in G#3.

In QSAR study #1 the calibration set is the group G#1 and the prediction set is the
group G#2. In QSAR study #2 the calibration set is the group G#2 and the prediction
set is the group G#1. In QSAR study #3 the calibration set is the group G#3 and the
prediction set is the group G#4. In QSAR study #4 the calibration set is the group G#4
and the prediction set is the group G#3.

In QSAR studies #1 and #2 the average toxicity in the calibration set is close to
average toxicity in the prediction set (1.22 vs. 1.31). Therefore, the prediction for the
prediction set molecules is, as a rule, the effect of interpolation.

On the contrary, in QSAR studies #3 and #4 the average toxicity in the calibration
set and the average toxicity in the prediction set are very different (1.81 vs. 0.74).
Therefore, the prediction for the prediction set molecules is, as a rule, the effect of
extrapolation.

In QSAR study #5 the calibration set includes all molecules in Table 1 and the pre-
diction set is missing. This QSAR study allows an useful comparison with the results
in QSAR studies #1–#4, from the point of view of structure-toxicity relationship.

The program PRECLAV computes type (11) multilinear QSARs.

T = C0 +
k∑

i=1

Ci · Di (11)
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where T is (the value of) toxicity; C0 is the free term (intercept); Ci are coefficients
(weighting factors); Di are (the value of) significant descriptors; k is the number of
descriptors in the analyzed set.

The algorithm of QSAR computation, specific to PRECLAV software, statistical
formulas included, was previously described [7], including the identification and step-
by-step elimination of outliers.

The square of Pearson linear correlation r2 of observed/computed values, the Fisher
function F , the standard error of estimation SEE, the relative standard error of esti-
mation RSEE and the quality function Q are criteria for the quality of prediction for
the calibration/prediction set molecules.

RSEE = 1 − SEE / A (12)

where A is the average of the observed values of toxicity

Q = r2 · (1 − p/N) (13)

where p is number of predictors; N is number of molecules in the calibration set

3 Commented results

Table 2 includes the identified clusters in database.
Some molecules can be considered atypical because they are included in clusters

having just one molecule. These molecules are non-similar with all other molecules.
The molecules 5, 19, 27, 38, 39, 43, 48 and 49 are atypical from the point of view of
chemical structure. The molecules 2, 3, 19, 26, 32 and 42 are atypical from the point
of view of shape. The molecules 1 and 49 are atypical from the point of view of size.
The molecule 44 is atypical from the point of view of hydrophilicity.

The diversity of molecules in sets and the similarity of sets are presented in Tables 3
and 4.

The similarity of G#1 and G#2 groups is higher than similarity of G#3 and G#4
groups, in average 0.584 ± 0.174 versus 0.498 ± 0.126. The diversity of molecules
in G#1 and G#2 groups and the diversity of molecules in G#3 and G#4 groups, are
somehow similar, in average 0.602 ± 0.084 versus 0.579 ± 0.114.

According to PRECLAV algorithm, there are no outliers in the calibration sets used
in QSAR studies #1–#5.

3.1 QSAR study #1

Calibration set: G#1 Prediction set: G#2
The significant molecular fragments in the calibration set:

C6H3O r = 0.6144
Cl r = 0.5984
OH r = −0.4524

C6H3 r = −0.3686
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Table 2 Clusters in database
According to Index of cluster Molecules in Table 1

Chemical structure 1 12, 14, 16

2 28, 33

3 18, 22, 41, 46

4 13, 31, 34, 37, 42, 47

5 2, 3, 4, 6, 7, 8, 9, 10, 11, 15,
17, 20, 24, 26, 29, 30, 36,
40, 44

6 21, 25, 35

7 23, 45

8 1, 32

9 48

10 39

11 27

12 5

13 43

14 19

15 49

16 38

Molecular shape 1 6, 7, 9, 25, 30, 38, 44

2 27, 41, 43, 47

3 8, 10, 21, 36, 40, 45

4 11, 17, 20, 24, 29, 48, 49

5 1, 5, 12, 16, 18, 31, 34, 46

6 13, 14, 37

7 4, 23, 35

8 22, 28, 33

9 15, 39

10 26

11 32

12 42

13 2

14 3

15 19

Molecular size 1 2, 3, 5, 12, 13, 14, 16

2 18, 19, 22, 27

3 4, 6, 7, 8, 9, 10, 11, 21, 23,
25, 28, 31, 33, 34, 37, 42

4 24, 29, 32, 40, 46

5 15, 17, 20, 26, 35, 36, 38, 39,
41, 43, 47

6 44, 48

7 36, 45

8 1
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Table 2 continued
According to Index of cluster Molecules in Table 1

9 49

Molecular
hydrophilicity

1 24, 29, 36, 40, 43, 45,
46, 47

2 12, 13, 18, 22, 28, 33

3 2, 3, 5, 19, 25, 32, 48

4 15, 17, 20, 26, 30, 31,
34, 37, 38, 39, 41,
49

5 1, 16

6 4, 6, 7, 8, 9, 10, 11, 14,
21, 23, 35, 27, 42

7 44

Table 3 Similarity and
diversity of G#1 and G#2

According to SIM DIVG#1 DIVG#2

Chemical structure 0.4110 0.5731 0.6773

Molecular shape 0.5344 0.7147 0.7092

Molecular size 0.5661 0.5528 0.5375

Molecular hydrophilicity 0.8224 0.5131 0.5386

Table 4 Similarity and
diversity of G#3 and G#4

According to SIM DIVG#3 DIVG#4

Chemical structure 0.3683 0.5102 0.7172

Molecular shape 0.5336 0.6868 0.7363

Molecular size 0.4317 0.4627 0.5319

Molecular hydrophilicity 0.6570 0.4868 0.5010

The best type (11) QSAR:

C0 = −5.4002
C1 = 4.3714
D1 is Flexibility index no. 1 [35]
C2 = 0.3811
D2 is Molecular volume/number of atoms ratio

Quality of prediction for the calibration set:

r2 = .9113 F = 118.2 SEE = .1989 Q = .8384

Quality of prediction for the prediction set: r2 = .9104 RSEE = 0.805

3.2 QSAR study #2

Calibration set: G#2 Prediction set: G#1
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The significant molecular fragments in the calibration set:

OH r = −0.6891
Br r = 0.4824

C6H4 r = −0.4135

The best type (11) QSAR:

C0 =−1.6727
C1 = 1.9989
D1 is Harary topological index/heavy atoms number
C2 = −0.0259
D2 is Percentage of carbon

Quality of prediction for the calibration set:

r2 = .9650 F = 303.2 SEE = .1242 Q = .8846

Quality of prediction for the prediction set: r2 = .8213 RSEE = 0.786

3.3 QSAR study #3

Calibration set: G#3 Prediction set: G#4
The significant molecular fragments in the calibration set:

OH r = −0.5792
C6H5 r = −0.4923

Cl r = 0.4476

The best type (11) QSAR:

C0 = −13.7314
C1 = 0.1521
D1 is LUMO–HOMO gap weighted molecular volume
C2 = 12.7054
D2 is Maximum bond order in C-A or A-A bonds (A is any heteroatom)
C3 = 442.8112
D3 is Resultant electrostatic force on probe atom no. 64 (a 3D descriptor) [36]

Quality of prediction for the calibration set:

r2 = .9327 F = 101.7 SEE = .0812 Q = .8208

Quality of prediction for the prediction set: r2 = .7387 RSEE = 0.748

123



J Math Chem (2014) 52:948–965 961

3.4 QSAR study #4

Calibration set: G#4 Prediction set: G#3
The significant molecular fragments in the calibration set:

Br r = 0.4086
C6H3O r = 0.3988
C6H4 r = −0.3948

The best type (11) QSAR:
C0 = −11.3063
C1 = 67.1448
D1 is Resultant electrostatic force on probe atom no. 65 (a 3D descriptor) [36]
C2 = 78.6486
D2 is 1/[E(lumo + 1) − E(homo − 1)] ratio
C3 = 0.5708
D3 is Molecular lipophilicity #1 [36]
C4 = 16.2655
D4 is Maximum free valence of C atoms

Quality of prediction for the calibration set:

r2 = .9196 F = 57.2 SEE = .1257 Q = .7663

Quality of prediction for the prediction set: r2 = .3434 RSEE = 0.528

3.5 QSAR study #5

Calibration set: all molecules in Table 1 Prediction set: missing
The significant molecular fragments in the calibration set:

OH r = −0.5731
C6H3O r = 0.4728

Br r = 0.3931
C6H4 r = −0.3788

Cl r = 0.3418
C6H3 r = −0.3241

The best type (11) QSAR:

C0 = −1.9823
C1 = 0.0214
D1 is COSMO area
C2 = 38.8059
D2 is Resultant electrostatic force on probe atom no. 62 (a 3D descriptor) [36]
C3 = 11.1615
D3 is Resultant electrostatic force on probe atom no. 78 (a 3D descriptor) [36]
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Table 5 Observed and computed values of toxicity

No. in Table 1 Tobs Tcalc by QSAR

#1 #2 #3 #4 #5

1 0.000 −0.159 0.030 0.044 0.136 0.015

2 0.239 0.409 0.317 0.279 0.334 0.292

3 0.369 0.367 0.330 0.360 0.827 0.397

4 0.440 0.664 0.626 0.565 0.917 0.650

5 0.448 0.453 0.666 0.589 0.509 0.600

6 0.544 0.689 0.619 0.555 1.309 0.783

7 0.553 0.575 0.656 0.512 1.107 0.565

8 0.553 0.668 0.626 0.537 0.903 0.624

9 0.559 0.654 0.626 0.430 0.643 0.508

10 0.607 0.740 0.571 0.695 0.958 0.576

11 0.660 0.844 0.541 0.668 1.144 0.738

12 0.679 0.552 0.700 0.621 0.175 0.618

13 0.708 0.564 0.913 0.653 0.653 0.760

14 0.827 1.046 1.259 0.970 0.723 0.893

15 0.849 0.859 0.940 0.734 1.294 1.030

16 0.904 0.628 0.679 0.836 0.771 0.800

17 0.904 0.904 0.787 0.983 1.049 1.013

18 0.935 0.946 1.286 0.956 0.756 1.003

19 0.976 0.679 0.880 0.819 0.857 0.902

20 1.040 1.167 0.810 1.023 1.366 1.062

21 1.071 1.073 1.137 1.069 1.119 1.147

22 1.112 1.053 1.253 1.121 0.703 1.092

23 1.131 1.064 1.137 1.075 1.111 1.110

24 1.161 1.388 1.121 1.248 1.651 1.286

25 1.226 1.079 1.137 1.152 1.227 1.180
26 1.234 1.054 0.847 1.128 1.333 1.026

27 1.273 1.396 1.390 1.360 1.491 1.412

28 1.285 1.228 1.484 1.345 1.148 1.207

29 1.344 1.509 1.094 1.245 1.355 1.253

30 1.361 0.924 0.923 0.752 1.321 0.955

31 1.467 1.651 1.519 1.532 1.521 1.580

32 1.525 1.536 1.497 1.929 1.586 1.789

33 1.549 1.185 1.496 1.216 1.443 1.204

34 1.559 1.649 1.519 1.584 1.578 1.666

35 1.634 1.270 1.390 1.350 1.698 1.468

36 1.676 1.819 1.664 1.817 1.696 1.414

37 1.702 1.564 1.549 1.438 1.929 1.508

38 1.708 1.800 1.997 1.861 1.823 1.741

39 1.709 1.325 1.742 1.427 1.496 1.760
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Table 5 continued

No. in Table 1 Tobs Tcalc by QSAR

#1 #2 #3 #4 #5

40 1.728 1.589 1.402 1.549 1.639 1.568

41 1.834 1.920 1.924 1.862 1.748 2.004

42 1.993 1.674 1.512 1.661 2.090 1.865

43 2.210 2.485 2.209 2.290 2.292 2.195

44 2.219 2.715 2.314 2.947 2.353 2.468

45 2.293 1.955 1.754 2.166 2.055 2.204

46 2.481 2.758 2.416 2.660 2.533 2.583

47 2.531 2,382 2.025 2.163 2.386 2.284

48 2.544 2.848 2.597 3.956 2.491 2.423

49 2.638 2.737 3.019 3.617 2.494 2.768

Quality of prediction for the calibration set:

r2 = .9484 F = 282.0 SEE = .1501 Q = .8904

The set of significant molecular fragments identified in QSAR study #5 includes all
significant molecular fragments identified in QSAR studies #1–#4, with the exception
of fragment C6H5.

According to the physical meaning of predictors in QSAR studies #1–#4 the influ-
ence of the chemical structure on toxicity is higher than the influence of molecular
size and shape. On the contrary, according to the physical sense of predictors in QSAR
study #5, the influence of the chemical structure on toxicity is missing and the toxicity
depends on molecular size and shape only.

Table 5 includes the observed values versus calculated values of toxicity in QSAR
studies #1–#5. The calculated values for prediction set molecules are bolded.

4 Conclusions

The calculated influence of certain molecular feature (chemical structure, size, shape,
hydrophilicity) on the toxicity of phenol derivatives depends on the structure of the
database (number of molecules and diversity of molecules having analyzed molecular
feature).

We observed a direct or inverse correlation between the quality of prediction for
the prediction set (according to r2 and RSEE), the similarity of sets and the diversity
of molecules in sets (according to Tables 3 and 4).

More precisely:

• there is a direct correlation with the similarity of sets, regardless of analyzed feature
(chemical structure, size, shape, hydrophilicity)
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• there is an inverse correlation with the diversity of molecules in the calibration set,
from the point of view of chemical structure, size and shape

• there is a direct correlation with the diversity of molecules in the calibration set,
from the point of view of hydrophilicity

• there is a direct correlation with the diversity of molecules in the prediction set,
regardless of analyzed feature

The analysis of much greater number of databases should permit identification of
the formula for the suitability (adequacy), function of number of molecules in sets,
diversity of molecules in sets and similarity of sets, from the point of view of some
significant molecular features. This formula will be, in principle, a measure of the
adequacy of a database for following QSAR studies.
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